GUJARAT TECHNOLOGICAL UNIVERSITY

MECHANICAL ENGINEERING COMPUTATIONAL FLUID DYNAMICS SUBJECT CODE: 2181925 B.E. 8th SEMESTER

Type of Course: Engineering Science

Prerequisite: Calculus, Vector Calculus and linear Algebra, Advanced Engineering Mathematics, Complex Variables and Numerical Methods and Fluid Mechanics

Rationale: The course is formulated to impart detailed study of computational techniques in field of fluid flow.

Teaching and Examinations Scheme:

Teaching Scheme			Credits	Examination Marks						
			Theory Marks			Practical Marks			Total	
L	Т	Р	С	ESE	PA (M)		ESE (V)		PA	Marks
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Content:

Sr	Content	Total	%
No		Hrs	Weightage
1	Mathematics & Fluid Mechanics Review: Vector calculus, Vector algebra,	5	11
	Ordinary differential equations and Partial differential equations with		
	engineering applications.		
2	Integral and differential form of conservation equations, Viscous and inviscid	9	22
	flows. Laminar turbulent flows, Euler and Navier Stokes equations, Velocity		
	and thermal boundary layers.		
3	Finite difference method, discretization, discretization error, Upwind and	10	24
	downwind schemes, higher order methods, Implicit and Explicit method, steady		
	and transient solutions, consistency, tri-diagonal matrix algorithm,		
	convergence and stability.		
4	Grid Generation Method: Definition and types of grid, Transformation of	6	14
	equation, Matrices and Jacobians, Stretched Grids, Elliptic Grids, Adaptive		
	grids. QUICK and SIMPLE algorithm.		
5	Finite Volume Method for one and two dimensional diffusion problem.	9	22
6	Introduction to CFD Software and applications.	3	7

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
7	15	19	15	7	7			

Legends: R: Remembrance; U: Understanding; A: Application; N: Analyze, E: Evaluate, C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Computational Fluid Dynamics: The Basics with Applications by John D Anderson, Mc Graw Hill Book Company.
- 2. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Versteeg, H. K. & W. Malalasekera, Pearson Education, Ltd.
- 3. Numerical Heat Transfer and Fluid Flow, Suhas V Patankar, Hemisphere Publishing.

Course Outcome:

After successful completion of the course, the student will be able to

- Review the required underlying basic concepts in mathematics and Fluid Mechanics.
- Understand the basic concepts of Finite Difference and Finite Volume Methods.
- Comprehend the methodology and algorithms of CFD analysis.
- Apply concepts of CFD for problem solving

List of Experiments:

- 1. Perform numerical analysis on flow through pipe with varying Reynolds Number.
- 2. To calculate hydrodynamic length and boundary layer thickness for pipe flow numerically.
- 3. To calculate lift and drag co-efficient for a cylinder by using numerical analysis.
- 4. To calculate variation of lift and drag co-efficient for an airfoil with varying angle.
- 5. To understand the behavior of Creeping flow by numerical simulation.

Open Ended Problem:

- 1. Numerical study of lid driven cavity.
- 2. Numerical study of mixing of two fluids.

Equipment / Computational facility:

Practical aspect of the subject is based on computation work so high configuration / specification computer systems are mandatory.

Software Packages:

- OpenFOAM
- Scilab

Website:

• www.cfd-online.com

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters / parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College / Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.