GUJARAT TECHNOLOGICAL UNIVERSITY

MECHANICAL ENGINEERING ROBOTICS SUBJECT CODE: 2181919 B.E. 8TH SEMESTER

Type of course: Engineering Science

Prerequisite: Zeal to learn the subject

Rationale: To impart widespread acquaintance of robotic system along with different configurations, their kinematics, singularity problems, dynamics, Trajectory planning and real field applications of them.

Teaching and Examination Scheme:

Teaching Scheme Credits			Credits	Examination Marks					Total	
L	Т	Р	C	Theory Marks		Practical Marks			Marks	
				ESE	ESE PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	10	150

Content:

Sr.	Content	Total	%	
No.		Hrs	Weightage	
1	General considerations of Robotic Manipulator Robot anatomy: Links, Joint and joint notations scheme, Degrees of freedom; Arm and wrist configurations, End effectors; Coordinate frames, Mapping between: Rotated frames, Translated frames, rotated and translated frames; Description of robotic pose in a space; Homogeneous transformation and inverting a homogeneous transformation; Orientation with RPY and Euler angles (Forward and inverse formulations)	09	20%	
2	Kinematics of Robotic Manipulators Direct Kinematics, Kinematic Modelling of the Manipulator; Denavit- Hartenberg (DH) Representation; Inverse Kinematic; Manipulator Work space, Solvability of inverse kinematic models: Existence of Solution, Multiplicity of Solutions; Solution Techniques, Guidelines for Closed form Solution	08	20%	
3	Differential Motion and Statics Linear and Angular Velocity of a rigid body; Relation between transformation matrix and angular velocity; Mapping velocity vectors; Linear and Angular velocity of a link; Manipulator Jacobian; Jacobian Singularities; Static analysis of robots	08	20%	
4	Dynamic Analysis Langrangian mechanics; Lagrange- Euler formulation; Velocity of point on the manipulator; The inertia Tensor; The kinetic Energy; Newton-Euler Formulation: Kinematic of Links; Link Acceleration; Concept of inverse dynamics	06	10%	

5	Robotics Sensors, Grippers and Vision Sensors in robotics: Acoustic, Optic, Pneumatic, Force/ Torque sensors; Properties of Sensors, Robotic Vision systems, Industrial Applications of Vision based robotic systems. Robotic grippers and their design criteria	06	15%
6	Trajectory Planning Steps in trajectory planning; various terminologies; Joint space techniques; point to point motion with via points; Linear function with parabolic blends; Cartesian space techniques, Parametric description of straight and circular path	05	10%
7	Robot Applications Industrial, Material Handling, Processing, Assembly : Peg in hole, Compliance, Inspection, Surgical, Space and Military applications; Principles for robot application and application planning	03	5%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
12	20	18	10	10	-		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Introduction to Robotics, S K Saha, Tata McGraw Hill, 2008
- 2. Robotics and control, R K Mittal, I J Nagrath, Tata McGraw Hill 2003
- 3. Introduction to robotics, John J Craig, Pearson/Prentice Hall, 2005, Third edition
- 4. Introduction to Robotics: Analysis, Control, Applications, Saeed Niku, John Wiley & Sons
- 1. A Robot Engineering Textbook, Mohsen Shahinpoor, Harper and Row, Publisher, New York
- 2. Industrial Robotics, Technology, Programming and Applications, Mikell P Groover, Tata McGraw Hill, 2008

Course Outcome:

After learning the course, the students should be able to:

- 1. Know basic anatomy of robotics system
- 2. Learn various configuration with different joints
- 3. Apply the concept of DH convention for forward and inverse kinematics
- 4. Know various approaches for dynamics of robotic system and their trajectory planning
- 5. Learn the different real time applications of various robots

List of Experiments:

- 1. Introduction of Robotic system, various configurations and DOF calculations
- 2. Basic robot Joints and its simulation using high end computer software
- 3. Direct kinematics for open/closed loop configurations analytically/simulation/coding
- 4. Inverse kinematics for open/closed loop configurations analytically/simulation/coding
- 5. Coding/simulation of direct kinematics for open/closed loop configurations along with work space generation using high end software
- 6. Formulation of DH parameters of robot configuration and its simulation using open source software
- 7. Lagrangian formulation of the given configuration along with its coding/ validation using simulation software

- 8. Newtonian formulation of the given formulation along with its coding/ validation using simulation software
- 9. Design of trajectory for a specific task as given by instructor
- 10. Simulation/ performance of a trajectory planning of a robot
- 11. Study of various robotic sensors along with specifications and their applications area

Design based Problems (DP)/Open Ended Problem:

- 1. Design of robot for a given degree of freedom and required pay load capacity
- 2. Static force analysis of any robot or robotic arm configuration under consideration
- 3. Trajectory planning for a robot for a given industrial requirement

Major Equipment:

- Robot kits
- MATLAB/ High end Simulation software for mechanisms/robots

List of Open Source Software/learning website:

- http://www.roboanalyzer.com/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.