GUJARAT TECHNOLOGICAL UNIVERSITY

DATA MINING AND BUSINESS INTELLIGENCE SUBJECT CODE: 2170715 B.E. 7th SEMESTER

Type of course: Elective

Prerequisite: NA

Rationale: NA.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total		
L	T	P	C	Theory Marks		Practical Marks		Marks		
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Content:

1. Overview and concepts Data Warehousing and Business Intelligence	05 Hours	12%
Why reporting and Analysing data, Raw data to valuable information-Lifecycle		
of Data - What is Business Intelligence - BI and DW in today's perspective -		
What is data warehousing - The building Blocks: Defining Features - Data		
warehouses and data 1 marts - Overview of the components - Metadata in the		
data warehouse - Need for data warehousing - Basic elements of data		
warehousing - trends in data warehousing.		
2. The Architecture of BI and DW	07 Hours	16%
BI and DW architectures and its types - Relation between BI and DW - OLAP		
(Online analytical processing) definitions - Difference between OLAP and		
OLTP - Dimensional analysis - What are cubes? Drill-down and roll-up - slice		
and dice or rotation - OLAP models - ROLAP versus MOLAP - defining		
schemas: Stars, snowflakes and fact constellations		
3. Introduction to data mining (DM)	04 Hours	08%
Motivation for Data Mining - Data Mining-Definition and Functionalities –		
Classification of DM Systems - DM task primitives - Integration of a Data		
Mining system with a Database or a Data Warehouse - Issues in DM – KDD		
Process		
4. Data Pre-processing	07 Hours	16%
Why to pre-process data? - Data cleaning: Missing Values, Noisy Data - Data		
Integration and transformation - Data Reduction: Data cube aggregation,		
Dimensionality reduction - Data Compression - Numerosity Reduction - Data		
Mining Primitives - Languages and System Architectures: Task relevant data -		
Kind of Knowledge to be mined - Discretization and Concept Hierarchy.		
5. Concept Description and Association Rule Mining	07 Hours	16%
What is concept description? - Data Generalization and summarization-based		
characterization - Attribute relevance - class comparisons Association Rule		
Mining: Market basket analysis - basic concepts - Finding frequent item sets:		
Apriori algorithm - generating rules - Improved Apriori algorithm - Incremental		

ARI	M – Associative Classification – Rule Mining		
6.	Classification and Prediction	07 Hours	16%
What is classification and prediction? – Issues regarding Classification and			
pred	iction:		
Clas	sification methods: Decision tree, Bayesian Classification, Rule based,		
CAI	RT, Neural Network		
	liction methods: Linear and nonlinear regression, Logistic Regression		
Intr	oduction of tools such as DB Miner /WEKA/DTREG DM Tools		
7.	Data Mining for Business Intelligence Applications	04 Hours	08%
Ι	Data mining for business Applications like Balanced Scorecard, Fraud		
	ection, Clickstream Mining, Market Segmentation, retail industry,		
telecommunications industry, banking & finance and CRM etc.,			
Data Analytics Life Cycle: Introduction to Big data Business Analytics - State			
	ne practice in analytics role of data scientists		
Key roles for successful analytic project - Main phases of life cycle -			
Dev	eloping core deliverables for stakeholders.		
8.	Advance topics	04 Hours	08%
Intro	oduction and basic concepts of following topics.		
	tering, Spatial mining, web mining, text mining,		
	Data: Introduction to big data: distributed file system – Big Data and its		
	ortance, Four Vs, Drivers for Big data, Big data analytics, Big data		
	ications. Algorithms using map reduce, Matrix-Vector Multiplication by		
	Reduce. Introduction to Hadoop architecture: Hadoop Architecture,		
	oop Storage: HDFS, Common Hadoop Shell commands, Anatomy of		
	Write and Read., NameNode, Secondary NameNode, and DataNode,		
	oop MapReduce paradigm, Map and Reduce tasks, Job, Task trackers -		
	ter Setup – SSH & Hadoop Configuration – HDFS Administering –		
Mor	itoring & Maintenance.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. J. Han, M. Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann
- 2. M. Kantardzic, "Data mining: Concepts, models, methods and algorithms, John Wiley &Sons Inc.
- 3. Paulraj Ponnian, "Data Warehousing Fundamentals", John Willey.
- 4. M. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education.
- 5. G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner", Wiley India.

Course Outcome:

After learning the course the students should be able to:

- 1. Students will be able to use mining tool.
- 2. Students are able to perform various data warehouse related exercise.

List of Experiments:

Assignments based on above course content will be given to the students at the end of each chapter. Each assignment contains minimum 5 questions.

Quizzes and Surprise tests will be conducted for testing the knowledge of students for particular topic.

Design based Problems (DP)/Open Ended Problem:

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.