GUJARAT TECHNOLOGICAL UNIVERSITY

COMPUTER ENGINEERING (07) AND INFORMATION TECHNOLOGY (16) DISTRIBUTED OPERATING SYSTEM SUBJECT CODE: 2160710 B.E. 6thSEMESTER

Type of course: Elective

Prerequisite: Operating Systems, Distributed Network

Rationale: To examine the fundamental principles of distributed systems, and provide students hands-on experience in developing distributed protocols. While we still look at issues in distributed operating systems, this course will address distributed systems in a broader sense. Emphasis will be placed on communication, process, naming, synchronization, consistency and replication, and fault tolerance.

Teaching and Examination Scheme:

Teaching Scheme Credits			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks		Marks		
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	150

Content:

Sr. No.	Content	Total Hrs	% Weightage
1	Introduction to distributed Systems:	06	15%
	Definition and goals, Hardware and Software concepts, Design issues	hours	
2	Communication in Distributed System:	02	5%
	Computer Network and Layered protocols, Message passing and related	hours	
	issues, synchronization, Client Server model & its implementation,		
	remote procedure call and implementation issues, Case Studies: SUN RPC, DEC RPC		
3	Synchronization in distributed systems:	04	10%
	Clock synchronization and related algorithms, mutual exclusion,	hours	
	Deadlock in distributed systems		
4	Processes and processors in distributed systems:	03	10%
	Threads, system model, processor allocation, scheduling in distributed	hours	
	systems: Load balancing and sharing approach, fault tolerance, Real		
	time distributed systems, Process migration and related issues		
5	Distributed File Systems:	04	10%
	Introduction, features & goal of distributed file system, file models, file	hours	
	accessing models, file sharing semantics, file caching scheme, file		
	replication, fault tolerance, trends in distributed file system, case study.		
6	Distributed Shared Memory:	05	15%
	Introduction, general architecture of DSM	hours	
	systems, design and implementation issues of DSM, granularity,		
	structure of shared memory space, consistency models, replacement		
	strategy, thrashing		

7	Naming	04	10%
	Overview, Features, Basic concepts, System oriented names, Object	hours	
	locating mechanisms, Issues in designing human oriented names, Name		
	caches, Naming and security, DNS		
8	Distributed Web-based Systems	03	10%
	Architecture, Processes, Communication, Naming, Synchronization,		
	Consistency and Replication: Web Proxy Caching, Replication for Web		
	Hosting Systems, Replication of Web Applications		
9	Security	03	10%
	Introduction of Security in Distributed OS, Overview of security		
	techniques, features, Need, Access Control, Security Management		
10	Case Study	03	5%
	Java RMI, Sun Network File System, Google case study		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
20	20	10	10	5	5		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Distributed Operating Systems Concepts and Design, Pradeep K. Sinha, PHI
- 2. Distributed Systems: Concepts and Design by George Coulouris, Jean Dollimore, Tim Kindberg, Pearson
- 3. Distributed Operating Systems by Andrew S Tannebaum, Pearson
- 4. Distributed Computing by Sunita Mahajan & Seema Shah OXFORD
- 5. Distributed Systems: Principles and Paradigms by Andrew S Tanebaum, Maarten Van Steen, PHI
- 6. Distributed Computing, Fundamentals, Simulations and Advanced topics, 2nd Edition, Hagit Attiya

and Jennifer Welch, Wiley India

Course Outcome:

After learning the course the students should be able to:

- 1. List the principles of distributed systems and describe the problems and challenges associated with these principles.
- 2. Understand Distributed Computing techniques, Synchronous and Processes.
- 3. Apply Shared Data access and Files concepts.
- 4. Design a distributed system that fulfills requirements with regards to key distributed systems properties.
- 5. Understand Distributed File Systems and Distributed Shared Memory.
- 6. Apply Distributed web-based system.
- 7. Understand the importance of security in distributed systems

List of Experiments:

- 1. Write a Program to implement Concurrent Echo Client Server Application.
- 2. Write the Programs for Remote Procedure call.
- 3. Write the Programs for Remote Method Invocation.
- 4. Write the Programs for Thread Programming in JAVA.
- 5. Implement CORBA file.
- 6. Write a Program to Increment a Counter in Shared Memory.
- 7. Implement Network File System (NFS).
- 8. Creation of a BPEL (Business Process Execution Language) Module and a Composite Application.
- 9. Study of Web Service Programming.
- 10. Study of Grid Services using various Tools.

Design based Problems (DP)/Open Ended Problem:

- 1. Discuss various Distributed Resource Management System Functions.
- 2. Compare Peer-to-Peer and Client-Server Networking
- 3. Discuss the various steps to configure Print Server in Windows Environment

List of Open Source Software/learning website:

- http://cquestionbank.blogspot.com
- www.intelligentedu.com/
- www.hermetic.ch/cfunlib.htm
- N.P.T.E.L. Video Lecture Series
- N.I.T.T.I. Instructional Resources Videos.
- www.cprogramming.com/
- www.c-program.com/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.