GUJARAT TECHNOLOGICAL UNIVERSITY

CIVIL & INFRASTRUCTURE ENGINEERING (40) NUMERICAL AND STATISTICAL METHODS FOR CIVIL ENGINEERING SUBJECT CODE: 2140606

B.E. 4th Semester

Type of course: Engineering Mathematics

Prerequisites: The students are required to have a reasonable mastery over calculus, Differential equations and Linear algebra and introductory knowledge of probability and statistics.

Rationale: Mathematics is a language of Science and Engineering.

Teaching and Examination Scheme:

Teaching Scheme Credits			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks		Aarks	Marks	
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	2	0	5	70	20	10	30	0	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
	Probability		,, <u>B</u> B-
1	Reprientation: Definition of probability Exhaustive	03	07
1	events Pair wise independent events Multiplicative law of	05	07
	probability. Conditional probability. Baye's theorem		
2	Probability Distributions: Random variable.	05	12
	Mathematical Expectation, Standard Deviation, Binomial,		
	Poisson and Normal distributions, Mean, Median, Mode		
	Statistics		
3	Descriptive Statistics: Mean, Median, Mode, Standard	03	08
	deviation, Skewness		
4	Correlation and Regression: Bivariate distribution,	04	10
	Correlation coefficients, Regression lines, Formulas for		
	Regression coefficients, Rank correlation		
5	Curve Fitting: Fitting of Linear, Quadratic, Exponential	03	08
	and Logarithmic curves, Least squares method		
	Numerical Methods		
6	Finite Differences and Interpolation: Finite Differences,	08	15
	Forward, Backward and Central operators, Interpolation by		
	polynomials: Newton's forward ,Backward interpolation		
	formulae, Gauss & Stirling's central difference formulae,		
	Newton's divided and Lagrange's formulae for unequal		
	Intervals		

7	Numerical Integration: Newton-Cotes formula, Trapezoidal and Simpson's formulae, error formulae, Gaussian quadrature formulae	03	08
8	Solution of a System of Linear Equations: Gauss elimination, partial pivoting, Gauss-Jacobi and Gauss-Seidel methods	03	07
9	Roots of Algebraic and Transcendental Equations: Bisection, false position, Secant and Newton-Raphson methods, Rate of convergence	04	10
10	Numerical solution of Ordinary Differential Equations: Taylor series method, Euler method, Runge-Kutta method of order four, Milne's Predictor-Corrector method	06	15

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level			
10	15	20	20	35			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books: Reference Books:

- 1. E. Kreyszig, Advanced Engineering Mathematics(8th Edition), John Wiley (1999)
- 2. S. D. Conte and Carl de Boor, Elementary Numerical Analysis-An Algorithmic Approach (3rd Edition), McGraw-Hill, 1980
- C.E. Froberg, Introduction to Numerical Analysis (2nd Edition), Addison-Wesley,1981
- 4. Gerald C. F. and Wheatley P.O. , Applied Numerical Analysis (5th Edition), Addison-Wesley, Singapore, 1998
- 5. Johnson Richard A., Miller and Freund's Probability and Statistics (8th Edition) , PHI.
- 6. S.C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics (11th Edition), Sultan Chand & Sons.

Course Outcomes:

After learning the course the students should be able to :

- Understand and apply the basic concepts of probability, random variables, probability distribution.
- \circ ~ Use statistical methodology and tools in the engineering problem solving process.
- Compute and interpret descriptive statistics using numerical and graphical techniques
- Understand the basic concepts of regression and curve fitting
- Calculate finite differences of tabulated data.
- use numerical methods to find integration and differentiation
- o find an approximate solution of algebraic equations using appropriate method.

 $\circ\,$ Find an approximate solution of ordinary differential equations using appropriate iterative method.

List of Open Source Software/learning website:

http://nptel.ac.in/courses/111101003/ http://nptel.ac.in/syllabus/syllabus.php?subjectId=111101004 http://nptel.ac.in/courses/111105038/ http://nptel.ac.in/courses/111105041/ http://nptel.ac.in/courses/111105041/ http://nptel.ac.in/courses/111104079/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.