GUJARAT TECHNOLOGICAL UNIVERSITY

CIVIL ENGINEERING (06) STRUCTURAL ANALYSIS-I SUBJECT CODE: 2140603 B.E. 4th Semester

Type of course: Applied Mechanics

Prerequisite: Mechanics of Solids

Rationale: This subject is conceptual applications of principles of mechanics of rigid and deformable bodies in Engineering.

Teaching and Examination Scheme:

Teaching Scheme Credits			Examination Marks					Total		
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	2	0	6	70	20	10	30	0	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	Fundamentals of Statically Determinate Structures: Types of statically determinate & indeterminate structures, static and kinematic indeterminacy, stability of structures, principle of superposition, Maxwell's reciprocal theorems. Computation of internal forces in statically determinate structures such as plane truss, plane frame, grids.	06	10
2	Displacement of Determinate Beams and Plane Truss: Differential equation of elastic curve, relation between moment, slope and deflection, Macaulay's method, Moment Area Method, Conjugate Beam Method applied to beams. Joint displacement of determinate plane truss using unit load method.	10	20
3	Direct and Bending stresses: Members subjected to eccentric loads, middle third rule, kernel of section, chimney subjected to wind pressure, retaining walls, dams subjected to hydraulic pressure.	06	15
4	Columns and Struts: Buckling of columns, different end conditions, effective length, least radius of gyration, Euler's and Rankine's formulae, columns with initial curvature, eccentrically loaded columns, columns with lateral loading.	06	10
5	Arches, Cables and Suspension Bridges: Calculation internal forces in three hinge arches with circular and parabolic shapes subjected to various types of	08	10

	loading. Forces and end actions in cables due to various types of loading. Unstiffened three hinged parabolic and cantenory type suspension bridge.		
6	Thin cylinder: Analysis of thin cylinder and spherical vessels under pressure.	04	5
7	Fixed Beams & Consistent Deformation Method: Computation of fixed-end actions for various types of loads and secondary Effects using basic principles, beams of varying moment of inertia. Analysis of propped cantilever beams & beams of varying moment of inertia using Consistent Deformation Method	06	10
8	Strain Energy Resilience, strain energy due to axial loads & flexure, proof resilience, modulus of resilience, impact loads, and sudden loads.	10	20

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
U Level	A Level	N Level	E Level				

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. Junarkar S.B. & Shah H.J.; Mechanics of Structures Vol-I; Charotar publishing house, Anand
- 2. Wang C. K.; Intermediate Structural Analysis; Tata McGraw Hill book Company, New Delhi
- 3. Popov E.P.; Engineering Mechanics of Solids; Prentice Hall of India, New Delhi
- 4. Ryder G.H.; Strength of Materials; Mcmillan
- 5. Gere & Timoshenko; Mechanics of Materials; CBS Publishers & Distributors, Delhi
- 6. Hibbler R C; Mechanics of Materials; Pearson Education
- 7. Hibbler R C; Structural Analysis; Pearson Education

Course Outcomes:

After studying this subject students will be able to:

- 1. Apply principles of statics to determine reactions & internal forces in statically determinate structures.
- 2. Determine displacements of statically determinate structures.
- 3. Determine stresses due to axial & eccentric loading.
- 4. Determine buckling load for columns & struts with different end conditions.
- 5. Determine strain energy stored in a body.
- 6. Determine stresses in thin cylinders and spherical vessels

Term-Work:

1. The students will have to solve at least five examples and related theory from each topic as an assignment/tutorial. Practical examinations shall consist of oral based on term work and above course.

List of Open Source Software/learning website: www.nptel.iitm.ac.in/courses/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.