GUJARAT TECHNOLOGICAL UNIVERSITY MECHANICAL ENGINEERING PRINCIPLES OF COMBUSTION ENGINEERING SUBJECT CODE: 2181918 B.E. 8TH SEMESTER

Type of course: Fundamental

Prerequisite: Thermodynamics, Fluid Mechanics & Heat Transfer

Rationale: Fundamental Understanding of Combustion Process

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks		Marks		
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	10	150

Content:

Sr.	Content	Total	%
No.		Hrs	Weightage
1	Introduction to Chemical Thermodynamics	4	10
	Introduction, Heat of reaction and formation, Free energy and the equilibrium		
	constants, Flame temperature calculations - Analysis & Practical considerations,		
	Sub and supersonic combustion thermodynamics - Comparisons & Stagnation		
	pressure considerations		
2	Chemical Kinetics	9	25
	Introduction, Rates of reactions and their temperature dependence - The		
	Arrhenius rate expression & Transition state and recombination rate theories,		
	Simultaneous interdependent reactions, Chain reactions, Pseudo-first-order		
	reactions and the "fall-off" range, The partial equilibrium assumption, Pressure		
	effect in fractional conversion, Chemical kinetics of large reaction mechanisms		
	- Sensitivity analysis, Rate of production analysis, Coupled thermal and chemical		
	reacting systems & Mechanism simplification		
3	Chemical and Thermal Systems	5	10
	Constant pressure fixed mass reactor, constant volume reactor, well stirred		
	reactor, plug flow reactor, application to combustion system modelling		
4	Conservative Equations	6	10
	Mass conservation, Species mass conservation, Multi component diffusion,		
	momentum conservation, Energy conservation, Conserved Scalar Concept		
5	Laminar Flames	9	20
	Laminar Premixed Flames - Physical Description, Simplified Analysis, Detailed		
	analysis Factors influencing flame velocity and thickness, flame stabilization,		
	ignition		
	Laminar Diffusion Flames – non reacting constant density laminar jet, jet flame,		
	flame lengths, soot formation and destruction, counter flow flames		
6	Turbulent Flames	9	25
	Applications of turbulent flames, Definition of turbulent flame speed, structure		
	of turbulent premixed flames, wrinkled flame regime, flamelets, flame		
	stabilization, Jet Flames		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks

R Level	U Level	A Level	N Level	E Level	C Level
7	15	15	13	10	10

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Combustion Physics, C.K. Law, 1st Edition, Cambridge University Press, 2006,
- 2. Combustion Theory, Forman A Williams, 2nd Edition, Addison-Wesley, 1985.
- 3. Combustion, Flames and Explosions of Gases, Bernard Lewis and Guenther von Elbe, 3rd Edition, Academic Press, 1987.
- 4. Combustion, Irvin Glassman, 3rd Edition, Academic Press, 1996.
- 5. An Introduction to Combustion, Concepts and Applications, Stephen R. Turns, 2nd Edition, McGraw-Hill, 2000.
- 6. Chemical Kinetics, Keith Laidler, 3rd Edition, Harper and Row, 1987.
- 7. Thermochemical Kinetics, Sidney W. Benson, John Wiley & Sons, 1968.

Course Outcome:

After learning the course, the students should be able to:

- Understanding of thermodynamics of combustion
 - Study of flames and its structure

List of Experiments:

- 1. Find the smoke point of different fuels.
- 2. Find the pour point and cloud point of various lubricants.
- 3. Find the calorific value of fuels with the help of Bomb Calorimeter.
- 4. Find the calorific value of fuels with the help of Junker's Gas Calorimeter.
- 5. Test the performance of fuel pump with fuel pump test rig.
- 6. Study of various spray characteristics of fuel.
- 7. Study of flame stabilization at different equivalence ratio.
- 8. Study of laminar premixed flames.
- 9. Study of turbulent flames.
- 10. Model different H₂/O₂ mechanism and find equilibrium temperatures at different equivalence ratios.

Design based Problems (DP)/Open Ended Problem:

- 1. Experimentally distinguish the laminar and turbulent flame regimes.
- 2. Design an industrial gas burner.
- 3. Analyze domestic stove.

Major Equipment:

- 1. Bomb Calorimeter and Junker's Gas Calorimeter
- 2. Fuel pump test rig
- 3. Bunsen Burner
- 4. Temperature measurement apparatus
- 5. Fuel supply system
- 6. Ignition system

List of Open Source Software/learning website:

- 1. http://nptel.ac.in/courses/101104014/
- 2. http://www.princeton.edu/cefrc/combustion-summer-school/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.