GUJARAT TECHNOLOGICAL UNIVERSITY BRANCH NAME: Mechanical Engineering SUBJECT NAME: Gas Dynamics SUBJECT CODE: 2171914 B.E. 7th SEMESTER

Type of course: Fundamental **Prerequisite:** Fluid Mechanics **Rationale:**

Teaching and Examination Scheme:

Teaching Scheme C			Credits	Examination Marks				Total		
L	Т	Р	C	Theory Marks		Practical N		Marks	Marks	
				ESE	PA	A (M)	ES	E (V)	PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	2	0	5	70	20	10	30	0	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment; OEP-Open Ended problem; AL-Active learning;

Content:

Sr.	Content	Total	% Weightage
No.		Hrs	
1	Fundamentals of compressible flow: Ideal gas relationship, The	8	19
	adiabatic energy equation, Mach number and its significance, Mach		
	waves, Mach cone and Mach angle, static and stagnation states,		
	relationship between stagnation temperature, pressure, density and		
	enthalpy in terms of Mach number, stagnation velocity of sound,		
	reference speeds, various regions of flow, Effect of Mach number on		
	compressibility, Area velocity relationship.	10	
2	One Dimensional Isentropic flow: General features of isentropic flow,	10	24
	performance curve, Comparison of adiabatic and isentropic process, One		
	dimensional isentropic flow in ducts of varying cross-section-nozzles and		
	diffusers, operation of nozzles under varying pressure ratio, mass flow		
	rate in nozzles, critical properties and choking, area ratio as function of		
	Mach number, Impulse function, non-dimensional mass flow rate in		
	terms of pressure ratio, area ratio and Mach number, working charts and		
2	gas tables, Application of Isentropic flow	0	22
3	Normal snock waves: Development of snock wave, I hickness of shock	9	22
	wave, governing equations, Strength of snock waves, Prandtl-Mayer		
	relation, Rankine-Hugomot relation, Mach number in the downstream of		
	normal shock, variation of now parameters across the normal shock,		
	shock supersonic diffusors, supersonic pitot tube		
1	Shock, supersonic diffusels, supersonic pilot tube	0	10
4	and Fanno flow equations, solution of Fanno flow equations, variation of	0	19
	flow properties variation of Mach no with duct length isothermal flow		
	in constant area duct with friction tables and charts for Fanno flow		
	Experimental friction coefficients		
	Experimental metion coefficients,		

5	Flow in constant area duct with heat transfer (Rayleigh flow) : Simple	7	16
	heating relation of a perfect gas, Rayleigh curve and Rayleigh flow		
	equations, variations of flow properties, maximum heat transfer, tables		
	and charts for Rayleigh flow.		
Sugges	sted Specification table with Marks (Theory):		

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
7	10	17	18	11	7		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Fundamental of Compressible flow, S. M. Yahya, New age international Publication, Delhi
- 2. Fundamentals of compressible fluid dynamics- P. Balachandran, PHI Learning, New Delhi
- 3. The dynamics and thermodynamics of Compressible fluid low Volume-I, Ascher H. Shapiro, the Ronald Press Company, New York.
- 4. Gas Dynamics, E. Rathakrishnan, PHI Learning Pvt. Ltd
- 5. Gas Dynamics and Jet Propulsion- P. Murugaperumal, Scitech Publication, Chennai.
- 6. Modern Compressible Flow: With Historical Perspective, John D. Anderson, McGraw-Hill Higher Education

Course Outcome:

After learning the course the students should be able to:

- Understand the basic concept of Gas Dynamics.
- Understand Behavior of Gas under various conditions.
- Use the Gas tables
- Understand basics of compressible flow
- Correlate fundamentals of Gas Dynamics with various mechanical systems

List of Experiments:

Design based Problems (DP)/Open Ended Problem:

Major Equipment:

List of Open Source Software/learning website:

- 1. http://nptel.ac.in/courses/112103021/
- 2. http://freevideolectures.com
- 3. www.learnerstv.com

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.