GUJARAT TECHNOLOGICAL UNIVERSITY

AUTOMOBILE ENGINEERING (02), INDUSTRIAL ENGINEERING (15) & MECHANICAL ENGINEERING (19) COMPLEX VARIABLES AND NUMERICAL METHODS SUBJECT CODE: 2141905 B.E. 4th SEMESTER

Type of course: Engineering Mathematics

Prerequisite: As a pre-requisite to this course students are required to have a reasonable mastery over multivariable calculus, differential equations and Linear algebra

Rationale:

Mathematics is a language of Science and Engineering.

Teaching and Examination Scheme:

Teaching Scheme Credits			Examination Marks					Total		
L	Т	Р	С	Theor	Theory Marks Practical N		Aarks	Marks		
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	2	0	5	70	20	10	30	0	20	150

Content:

Sr. No.	Content	Total	%
		Hrs	Weightage
1	Complex Numbers and Functions:	10	24
	Exponential, Trigonometric, De Moivre's Theorem, Roots of a complex		
	number ,Hyperbolic functions and their properties, Multi-valued function		
	and its branches: Logarithmic function and Complex Exponent function		
	Limit ,Continuity and Differentiability of complex function, Analytic		
	functions, Cauchy-Riemann Equations, Necessary and Sufficient		
	condition for analyticity, Properties of Analytic functions, Laplace		
	Equation, Harmonic Functions, Harmonic Conjugate functions and their Engineering Applications		
2	Complex Integration:	04	10
2	Curves, Line Integral(contour integral) and its properties, Cauchy-	04	10
	Goursat Theorem, Cauchy Integral Formula, Liouville Theorem (without		
	proof), Maximum Modulus Theorems(without proof)		
3	Power Series:	05	12
	Convergence(Ordinary, Uniform, Absolute) of power series, Taylor and		
	Laurent Theorems (without proof), Laurent series expansions, zeros of		
	analytic functions, Singularities of analytic functions and their		
	classification		
	Residues: Residue Theorem, Rouche's Theorem (without proof)		
4	Applications of Contour Integration:	02	5
	Evaluation of various types of definite real integrals using contour		

	integration mathed		
	integration method		_
5	Conformal Mapping and its Applications:	03	7
	Conformal and Isogonal mappings , Translation, Rotation &		
	Magnification, Inversion, Mobius(Bilinear),		
	Schwarz-Christoffel transformations		
6	Interpolation: Finite Differences, Forward, Backward and Central	04	10
	operators,		
	Interpolation by polynomials: Newton's forward, Backward interpolation		
	formulae, Newton's divided Gauss & Stirling's central difference		
	formulae and Lagrange's interpolation formulae for unequal intervals		
7	Numerical Integration:	03	7
	Newton-Cotes formula, Trapezoidal and Simpson's formulae, error		
	formulae, Gaussian quadrature formulae		
8	Solution of a System of Linear Equations: Gauss elimination, partial	03	7
	pivoting, Gauss-Jacobi method and Gauss-Seidel method		
9	Roots of Algebraic and Transcendental Equations :	03	7
	Bisection, false position, Secant and Newton-Raphson		
	methods, Rate of convergence		
10	Eigen values by Power and Jacobi methods	02	4
11	Numerical solution of Ordinary Differential Equations:	03	7
	Euler and Runge-Kutta methods		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level			
10%	15%	20%	20%	35%			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. R. V. Churchill and J. W. Brown, Complex Variables and Applications (7th Edition), McGraw-Hill (2003)
- 2. J. M. Howie, Complex Analysis, Springer-Verlag(2004)
- 3. M. J. Ablowitz and A.S. Fokas, Complex Variables-Introduction and Applications, Cambridge University Press, 1998 (Indian Edition)
- 4. E. Kreyszig, Advanced Engineering Mathematics(8th Edition), John Wiley (1999)
- 5. S. D. Conte and Carl de Boor, Elementary Numerical Analysis-An Algorithmic Approach (3rd Edition), McGraw-Hill, 1980
- 6. C.E. Froberg, Introduction to Numerical Analysis (2nd Edition), Addison-Wesley, 1981
- 7. Gerald C. F. and Wheatley, P.O., Applied Numerical Analysis (Fifth Edition), Addison-Wesley, Singapore, 1998.
- 8. Chapra S.C, Canale, R P, Numerical Methods for Engineers, Tata McGraw Hill, 2003

Course Outcome:

After learning the course the students should be able to:

- evaluate exponential, trigonometric and hyperbolic functions of a complex number
- define continuity, differentiability, analyticity of a function using limits. Determine where a function is continuous/discontinuous, differentiable/non-differentiable, analytic/not analytic or entire/not entire.
- determine whether a real-valued function is harmonic or not. Find the harmonic conjugate of a harmonic function.
- o understand the properties of Analytic function.
- evaluate a contour integral with an integrand which have singularities lying inside or outside the simple closed contour.
- o recognize and apply the Cauchy's integral formula and the generalized Cauchy's integral formula.
- o classify zeros and singularities of an analytic function.
- o find the Laurent series of a rational function.
- write a trigonometric integral over $[0, 2\pi]$ as a contour integral and evaluate using the residue theorem.
- o distinguish between conformal and non conformal mappings.
- o find fixed and critical point of Bilinear Transformation.
- calculate Finite Differences of tabulated data.
- o find an approximate solution of algebraic equations using appropriate method.
- find an eigen value using appropriate iterative method.
- o find an approximate solution of Ordinary Differential Equations using appropriate iterative method.

List of Open Source Software/learning website:

http://ocw.mit.edu/resources/res-18-008-calculus-revisited-complex-variables-differential-equationsand-linear-algebra-fall-2011/part-i/ http://nptel.ac.in/courses/111105038/ http://nptel.ac.in/courses/111104030/ http://nptel.ac.in/courses/111107063/ http://nptel.ac.in/courses/111101003/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.