GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRICAL (09) / POWER ELECTRONICS (24) ANALOG ELECTRONICS SUBJECT CODE: 2130902 B.E. 3rd Semester

Type of Course: Engineering Science(ELECTRICAL)

Prerequisite: N.A.

Rationale: N.A.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	ory Marks		Practical I		Aarks	Marks
				ESE	PA (M)		PA(V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	6	70	20	10	20	10	20	150

Content:

Sr.	Topics	Teaching	Module
No.		Hrs.	Weightage
1.	Module 1. Diode and transistor: Common Emitter and Emitter	6	10
	follower analysis and comparison using hybrid equivalent circuit -		
	Considerations in cascading transistor amplifiers- Class B and Class		
	AB - Power amplifiers using BJTFET: Biasing a JFET and		
	MOSFET - Small signal model - CS and CD amplifiers. Frequency		
	response of BJT amplifiers. Concepts of negative and positive		
	feedback – loop gain- advantages of negative feedback -Feedback		
	Connection Types - Practical Feedback Circuits		
2.	Module 2. Op amp basics and linear applications: Introduction	12	30
	Block diagram representation of a typical op-amp, Analysis op-amp		
	ICC circuits, types, designations, packages, pin configurations and		
	power supplies. Ideal op-amp, equivalent circuit, open loop op amp		
	configurations of differential, inverting and non-inverting		
	amplifiers, op amp feedback amplifier analysis, differential		
	amplifier with one, two and three op amps.Op amp parameters -		
	offset voltages and currents, bias current, drift, PSRR, CMRR,		
	offset nulling methods.		
3	Module 3. AC performance of O-amp: Bandwidth, slew rate and	12	30
	frequency response. Op-amp applications: DC and AC amplifiers,		
	peaking, summing scaling and averaging amplifiers,		
	instrumentation amplifier, differential input and differential, output		
	amplifier, V to I and I to V converters, integrator, differentiator		
	comparator, non-linear amplifier, phase shift oscillator, Wien		
	bridge oscillator, square, triangular and sawtooth wave generator,		

	voltage controlled oscillator, zero crossing detector, window		
	detector, introduction to analog simulation.		
4	Module 4. Non linear IC applications using Opamp: Signal	12	30
	Generators: Square, triangle and ramp generator circuits using		
	opamps - Effect of slew rate on waveform generation- monostable		
	circuits- Principles of VCO circuits. Comparator Circuits: Zero		
	Crossing Detector- Regenerative comparator circuits Active filters		
	-Types- Characteristics- Frequency Response of different types of		
	filters- Order and cut off frequency -Butterworth low pass filter -		
	First order and second order filter design - Sallen and Key second		
	order LP filter Butterworth high pass filters - Second order wide		
	band and narrow band filters. Timer IC 555: Functional diagram-		
	astable and monostable modes Phase locked loops: Principles -		
	Building blocks of PLL-Lock and Capture ranges - Capture process		
	- Study of NE565 - Applications of PLL - Frequency multiplication		
	- FSK demodulator - FM demodulation. Three terminal regulator		
	ICs: basic block schematic - 78 x x& 79 x x series - Adjustable		
	output voltage regulator LM 317, LM 340 and LM 337 series		
	power supply ICs. their use and basic design considerations for		
	designing regulated power supplies.		

Reference Books:

- 1. Robert T. Paynter, Introductory Electronic Devices and Circuits, Pearson Education
- 2. A. V. Boylestad and Nashelsky, Electronic Devices and Circuits, Prentice Hall of India
- 3. Ramakant A Gayakwad, Op- Amps and Linear Integrated Circuits, Prentice Hall of India
- 4. Schilling and Belove, Electronic Circuits, McGraw Hill
- 5. Theodore F. Bogart Jr., Electronic Devices and Circuits,
- 6. K. R. Botkar, Integrated Circuits, Khanna Publishers
- 7. Floyd, Fundamentals of Analog Circuits 2e, Pearson Education.

Course Outcomes:

After learning the course the students should be able to:

- Understand the different configurations of transistor and amplifiers.
- To test and design the circuits with op-amps and other electronics components for different applications.
- To test and design circuit using different ICs.

List of Practical including Open Ended Problems:

- 1. Study the different parameter of op-amp.
- 2. Comparison between different transistor configurations.
- 3. Frequency response of inverting amplifier and non-inverting amplifier.
- 4. Study of op-amp as inverting amplifier and non-inverting amplifier.
- 5. OPAMP circuits Design and set up of inverter, scale changer, adder, non-inverting amplifier, integrator, differentiator, and comparator.
- 6. OPAMP circuits –integrator, differentiator, and comparator.
- 7. Phase shift and Wein's Bridge oscillator with amplitude stabilization using OPAMPs.
- 8. Waveform generation Square, triangular and saw tooth wave form generation using OPAMPs.
- 9. Application of op-amp as low pass filter, high pass filter and band-pass filter.

- 10. IC 555 Applications as timer.
- 11. IC 555 Applications as bistable, monostable and astablemulti-vibrator.
- 12. PLL IC 565/566 Frequency multiplying, FSK demodulation
- * The course coordinator has to define at least 3 open ended problems related to the courses.

Major Equipments:

The necessary no. of Kits, breadboard, equipment, accessories and instruments etc... to be provided to conduct the above practical in a group of max. 4 students.

List of Open Source Software/learning website:

Open Source Sfteware:

- LTSpice for circuit simulation,
- KiCAD for CAD application

Web-base tools for design:

- http://www.fairchildsemi.com/support/design-tools/power-supply-webdesigner/
- http://www.ti.com/lsds/ti/analog/webench/overview.page
- Circuit Lab:
- https://www.circuitlab.com/editor/

Open source for Math Tools:

- http://maxima.sourceforge.net/
- http://www.sagemath.org/
- http://www.scilab.org/
- http://www.gnu.org/software/octave/

Learning website

- <u>http://www.electrical-engineering-portal.com/</u>
- http://nptel.iitm.ac.in/courses.php

Active learning Assignments (AL) : Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.